|
def | __init__ (self, rotation=0) |
| Init copula. More...
|
|
def | cdf (self, u, v, theta) |
| Evaluate the copula's CDF function. More...
|
|
def | pdf (self, u, v, theta) |
| Public facing PDF function. More...
|
|
def | h (self, u, v, theta) |
|
def | hinv (self, u, v, theta) |
|
def | fitMLE (self, u, v, theta0, kwargs) |
| Maximum likelyhood copula fit. More...
|
|
def | sample (self, n=1000, mytheta) |
| Draw N samples from the copula. More...
|
|
def | setRotation (self, rotation=0) |
| Set the copula's orientation: Allows for modeling negative dependence with the frank, gumbel, and clayton copulas (Archimedean Copula family is non-symmetric) More...
|
|
def | kTau (self, rotation=0, theta) |
| Public facing kendall's tau function.
|
|
|
def | _pdf (self, u, v, rotation=0, theta) |
| Pure virtual density function. More...
|
|
def | _cdf (self, u, v, rotation=0, theta) |
| Default implementation of the cumulative density function. More...
|
|
def | _ppf (self, u, v, rotation=0, theta) |
| Percentile point function. More...
|
|
def | _h (self, u, v, rotation=0, theta) |
| Copula conditional distribution function. More...
|
|
def | _hinv (self, u, v, rotation=0, theta) |
| Inverse H function.
|
|
def | _v (self, u, v, rotation=0, theta) |
| Copula conditional distribution function. More...
|
|
def | _vinv (self, u, v, rotation=0, theta) |
|
def | _nlogLike (self, u, v, rotation=0, theta) |
| Default negative log likelyhood function. More...
|
|
def | _logLike (self, u, v, rotation=0, theta) |
| Default log likelyhood func.
|
|
def | _invhfun_bisect (self, U, V, rotation, theta) |
| Compute inverse of H function using bisection. More...
|
|
def | _AIC (self, u, v, rotation=0, theta) |
| Estimate the AIC of a fitted copula (with params == theta) More...
|
|
def | _gen (self, t, theta) |
| Copula generator function.
|
|
def | _kTau (self, rotation=0, theta) |
| Computes Kendall's tau. More...
|
|
def | _rotPDF (cls, f) |
| Define copula probability density function rotation.
|
|
def | _rotCDF (cls, f) |
| Define copula cumulative density function rotation.
|
|
def | _rotHinv (cls, f) |
| Define copula dependence function rotation.
|
|
def | _rotH (cls, f) |
| Define copula inverse dependence function rotation.
|
|
def | _rotGen (cls, f) |
| Copula generator wrapper.
|
|
Bivariate Copula base class.
Meant to be subclassed with the PDF and CDF methods being overridden for a given specific copula.
Copula can be rotated by 90, 180, 270 degrees to accommodate negative dependence.
def starvine.bvcopula.copula.copula_base.CopulaBase._kTau |
( |
|
self, |
|
|
|
rotation = 0 , |
|
|
|
theta |
|
) |
| |
|
private |
Computes Kendall's tau.
Requires that the copula has a _gen() method implemented. This method should be overridden if an analytic form of kendall's tau is avalible.
Let
represent a random variable and
is an RV distributed according to
.
where
is the copula generating function.
Note: For the gauss and students-t copula:
where
is the linear correlation coefficient.
def starvine.bvcopula.copula.copula_base.CopulaBase._ppf |
( |
|
self, |
|
|
|
u, |
|
|
|
v, |
|
|
|
rotation = 0 , |
|
|
|
theta |
|
) |
| |
|
private |
Percentile point function.
Equivilent to the inverse of the CDF. Used to draw random samples from the bivariate distribution.
EX: will draw 100 samples from a t-copula with params [0.21, 20]
>>> import starvine.bvcopula as bvc
>>> My_Copula = bvc.t_copula.StudentTCopula()
>>> u, v = np.random.uniform(0, 1, 100)
>>> My_Copula._ppf(u, v, rotation=0, 0.21, 20)