Pair copula constructions are comprised of two "nodes" and one "edge" connecting them.
More...
|
def | __init__ (self, args, kwargs) |
|
def | marginals (self) |
| Marginal distributions access. More...
|
|
def | setMarginals (self, uModelName, vModelName) |
| Set the marginal distribution models. More...
|
|
def | traverseDown (self) |
|
def | lowerNode (self) |
|
def | setLowerNode (self) |
|
def | neighborNodes (self) |
|
def | setNeighborNodes (self, u, v) |
|
def | __init__ (self, x, y, weights=None, kwargs) |
| Bivariate data set init. More...
|
|
def | rank (self, method=0) |
| rank transfom the data More...
|
|
def | rankInv (self) |
| Inverse rank transform data back to original scale.
|
|
def | setTrialCopula (self, family) |
|
def | empKTau (self) |
| Returns emperical kendall's tau of rank transformed data. More...
|
|
def | empSRho (self) |
| Returns emperical spearman rho, the rank correlation coefficient. More...
|
|
def | empPRho (self) |
| Returns linear correlation coefficient, pearson's rho. More...
|
|
def | copulaTournament (self, criterion='AIC', kwargs) |
| Determines the copula that best fits the rank transformed data based on the AIC criterion. More...
|
|
def | fitCopula (self, copula, thetaGuess=(None, None,)) |
| fit specified copula to data. More...
|
|
def | rotateData (self, u, v, rotation=-1) |
| Rotates the ranked data on the unit square. More...
|
|
def | setRotation (self, rotation=0) |
| Set the copula's orientation: 0 == 0 deg 1 == 90 deg rotation 2 == 180 deg rotation 3 == 270 deg rotation Allows for modeling negative dependence with the frank, gumbel, and clayton copulas (Archimedean Copula family is non-symmetric)
|
|
|
| treeLevel |
|
| copulaParams |
|
| id |
|
| x |
|
| y |
|
| v |
|
| weights |
|
| rankMethod |
|
| u |
|
| trialFamily |
|
| copulaBank |
|
| pval_ |
|
| copulaModel |
|
| UU |
|
| VV |
|
| rotation |
|
Pair copula constructions are comprised of two "nodes" and one "edge" connecting them.
The nodes are marginal distributions and the edge is a bivariate copula.
- Note
- The base implementation is provided by the starvine.bvcopula.pc_base.PairCopula class. This class extends the base class to provided awareness of the Vine's structure.
§ lowerNode()
def starvine.vine.pcc.PairCopulaConstruction.lowerNode |
( |
|
self | ) |
|
- Returns
- Node in tree below this edge.
§ marginals()
def starvine.vine.pcc.PairCopulaConstruction.marginals |
( |
|
self | ) |
|
Marginal distributions access.
Marginal distribution models are stored in a tuple: (uModel, vModel) Ex maginal model access:
>>> self.marginals[0].fitMLE()
>>> self.marginals[0].parameters
§ setMarginals()
def starvine.vine.pcc.PairCopulaConstruction.setMarginals |
( |
|
self, |
|
|
|
uModelName, |
|
|
|
vModelName |
|
) |
| |
Set the marginal distribution models.
- Parameters
-
uModel | str univariate model name of first marginal dist |
vModel | str univariate model name for second marginal dist |
The documentation for this class was generated from the following file: